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a b s t r a c t

Predicting the operating behaviour of a complex assembly including active components

is a challenge, since accurate models of those components are rarely available. For

example, the dynamic effects of coupled motor pumps on a nuclear power plant floor

are of critical interest, but difficult to predict at the design phase. Indeed, manufacturers

be hard to handle in order to properly define the internal loads. However, the real device

and a FE model of the relevant part of the plant are available, and test facilities can be

designed.

In this paper, a complete methodology is described to set up a statically complete

reduced model of an active component from tests only. This active component

is submitted to an internal load. For both the component and the load, no model is

available. However, one may need to estimate the behaviour and effects of this

component when linked to another structure. First, a statically complete dynamic

model of the active component is set up, using a test device reproducing the joints

between the active component and the target structure. The use of data expansion

techniques on a coarse FE model of the active component, coupled with a tuned FE

model of the test device allows the estimation of the residual flexibilities on the

interface. Next, a component-dependent equivalent load is identified. Then, test and FE

models are combined to compute the forces to apply on the target structure.

A numerical example illustrates the methodology and highlights its practical

implementation. Good results are obtained with realistic simulation data. The results

also illustrate practical difficulties and limitations.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate knowledge of structures, including dynamic behaviour and forces, is an important issue from the aspects of
repair, diagnosis and maintenance. In a design phase, updated finite element models are widely used to estimate stresses,
life expectancy, and in operation behaviour. However, tuned FE models of the structures of interest are not always
available. Moreover, due to economic and technical constraints, they cannot be built. For example, EDF (Électricité de
France) is in charge of operating and maintaining more than a hundred power plants. It has to analyse, understand and
tackle vibration issues on complex structures such as pumps, motors, generators, and many other components, yet not
ll rights reserved.
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Nomenclature

½B�N�Na
input shape matrix

½C�Ns�N output shape matrix
{f}N generalized loads
[M] & [K] mass and stiffness
N size of the matrix
{q}N model states (i.e. FEM DOF)
½T�N�NT

reduction basis
fugNa

inputs (i.e. physical loads)
fygNs

outputs (i.e. measurements)
Z dynamic stiffness

Greek letters

fZgNM
generalized DOF

ffigN i th eigen mode
½\o

\
� natural angular frequencies

½F� normal modes of a FE models
½C� normal modes of reduced models
O active structure (to be identified)
O0 reference device
O1 structure under design or to be qualified with O

Superscripts

}T transpose
}0 relates to O0

}1 relates to O1

}&0 coupled system O [O0

}&1 coupled system O [O1

}þ pseudo inverse (Moore–Penrose), i.e 8A, AA+A=A

and A+AA+ =A+, (A+A)T=A+A (AA+)T=AA+

Subscripts

}a actuator (input)
}am attachment mode
}cm constraint mode
}cs correcting shape
}C complementary (interior) quantity
}g generalized quantity
}irm inertia relief mode
}I interface quantity
}L local model
}r reduced quantity
}rb rigid body
}s sensor (output)
}t test quantity (measurements)
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having tuned FE models for all the components. To achieve its goals, EDF make several efforts towards measurement,
system identification and hybrid modelling [1–3] to set up relevant models of components. Nevertheless, the estimation of
the operational behaviour of assemblies, using models deriving from tests, is still an issue. Indeed, in a design phase, or for
maintenance or repair purposes, it is critical to estimate the effects of a component under design on an existing assembly,
or the effect of an existing structure on a assembly under design. This issue is emphasized when the known structure
exhibits internal forces.

EDF has to deal with both sides of the issue. For its new power plants, it needs to design or validate civil engineering
structures, where existing pumps, motors or generators will be installed. Since EDF does not manufacture nor design its
pumps, motors or generators, these structures are only accessible by tests. On the opposite side, buildings under design
cannot be tested, but tuned FE models exist. Reciprocally, it sometimes needs to replace a pump or a motor in an existing
installation. In this case, both substructures are only known by tests, but an estimation of the coupled behaviour must be
available, for security purposes, before coupling. In both cases, EDF need to compute the coupled operational behaviour of
the installation. To achieve this goal, EDF needs tool to set up statically complete models (i.e. allowing coupling in the
substructuring techniques sense) of structures, embedding a definition of internal forces, for active components. The case
of an active structure (i.e. with internal loads) is addressed in this paper. The needs are summarized in Fig. 1. The main
problems to overcome are common interfaces definitions between substructures, the lack of appropriate interface
behaviour representation and relevant input forces. In this paper, a complete methodology is introduced to tackle these
difficulties.

The first problem is rarely addressed in the literature dealing with test substructuring [4,3], since authors, in general,
consider coincident sensors location on the interfaces, when considering experimental substructure coupling [5–8].
To deal with incompatible interfaces, the concept of generalized interface behaviour will be used [9–12]. This technique
will be discussed in Section 2. The use of generalized interface behaviour imposes new constraints, relieved by the use of a
rough and partial FE model of the structure. This concept of a ‘‘local’’ FE model, only used for fields reconstruction
purposes, has already been successfully used for structural dynamic modification prediction [13,14,3]. Combined with data
expansion techniques, this local FE model creates a kinematic link between measurements and generalized interface
behaviour.

The other two issues, the set up of a statically complete model, and of a generalized load, are mainly model-based force
identification problems, addressed in Section 3. The set up of a statically complete model strongly depends on the
estimation of the residual flexibilities. This problem has been widely studied, and many papers have been published,
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Fig. 1. Details of the needs to build a relevant model of an assembly of structures including an active component.
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allowing the estimation of accurate interface behaviour, since measurements are performed on the interface [15–19]. The
use of tests performed on coupled system can lead to accurate models of uncoupled components [20,4,21]. The same
methodology will be used in this paper. A structure, denoted reference structure, is introduced to estimate the residual
flexibilities. This reference structure is assumed to be available to perform both coupled and uncoupled measurements,
along with the computation of a tuned FE model.

The last step, for structure with internal forces, is the definition of an equivalent load that takes into account the
behaviour of the component. This point is emphasized in Section 4. This equivalent load, which is a generalized model of
the component including internal forces, can then be coupled to any other model to estimate in operation behaviour of a
complete assembly. The identification of input forces, either internal or external, is an active research field.
Many approaches have been proposed in the last few years, addressing this issue. Most of the authors consider an
underlying model to estimate loads, either through system identification techniques [22–25], or by solving the inverse
problem [26–29]. When considering the inverse problem approach, the system is ill-conditioned, and its inversion thus
imposes the use of some regularizing process, such as singular value decomposition, proper order decomposition, modal
truncation, spatial filtering or a combination of them [25,26,30,20,31]. In some cases, however, techniques have been
developed where the analysis of measurements can directly lead to an estimation of both a reduced model and generalized
loads [32–34].

2. Reduced model substructuring

The introduction of a generalized interface behaviour needs the use of a formalism making the difference between
the DOF of a model and the quantities of interest. The first section reminds the principles of the model reduction
and substructuring using this formalism. The second section presents the definition of the generalized interface
behaviour.

2.1. Reduced model substructuring

Component mode synthesis (CMS) is now widely known, and used to reduce the size of FE models for computation
purposes [35,36]. It is also a useful tool originally developed to deal with experimentally oriented coupling. The main
relationships are reminded using a two components example to introduce the formalism. First, assume that each
component has been modelled using FE techniques. Let Z denote the dynamic stiffness of the active structure (resp. Z0 for
the reference device), q (resp. q0) the displacements. Let C (resp. C0) be the output and B (resp. B0) the input shape matrices
associated with the interface DOF. Bext (resp. Bext

0 ) is the input shape matrix associated with external loads. For each
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structure, one has the following relations of evolution and observation

½Z�fqg ¼ ½B�fuIgþ½Bext�fuextg,

fyIg ¼ ½C�fqg,

(
(1)

where yI (resp. yI
0) denotes the generalized interface displacements, uI (resp. uI

0) the interface loads, and uext (resp. uext
0 )

the external loads. The continuity of the interface displacements, within the subspaces spanned by C and C0, is
written

½C �C0�
q

q0

( )
¼ 0, (2)

and the nullity of the virtual work, for all the displacement fields q and q0 verifying (2), gives

ð½C�fqgÞTð½B�fuIgÞþð½C
0�fq0gÞ

T
ð½B0�fu0

I gÞ ¼ 0: (3)

Let ½ RR0� denote a basis of the null space of [C �C0]. Hence, for each f q
q0g verifying Eq. (2), there exist a unique vector qr

&0

verifying

q

q0

( )
¼

R

R0

� �
fq&0

r g: (4)

Each vector qr
&0 then verifies the continuity given by the relation (2).

Substituting (4) and evolution relationships in (3) leads to the coupled problem

½RT ZRþðR0Þ
T Z0R0�fq&0

r g ¼ ½R
T Bext�fuextgþ½ðR

0Þ
T B0

ext�fu
0
extg: (5)

This formulation is more convenient than the traditional formulation when dealing with reduced models. It is not limited,
like the classical formulation, to FE DOF to express coupling conditions. The classical formulation is obtained using Boolean
input and output shape matrices. But this approach allows us to define many other interface behaviours, to weaken the
coupling conditions, for example, or to deal with incompatible meshes. In the classical formalism, we assume that the DOF
of the model can also be partitioned into interface and complementary DOF, so that

q¼
qC

qI

( )
(6)

and we then have ½C� ¼ ½0NI�NC
IdNI�NI

� and [B]=[C]T. In our case, interface DOF are the DOF used to define the generalized
interface behaviour.

When dealing with structural dynamics, one may then make the assumption that, for each substructure, there exists a
particular basis T (resp. T0) that can represent the behaviour of the model over a given frequency range. This given basis
must represent the distributed forces (and torques, for structural elements) that are transmitted from one substructure to
another [37–39,10]. Once a relevant basis is built, generalized displacements fields Z give a good estimate of the whole
behaviour. They are related to DOF q through the relationship

fqgN�1 ¼ ½T�N�Nr
fZgNr�1, (7)

where the subscripts N denotes the size of the entire FE model and Nr the size of the reduced subset of generalized DOF,
with Nr 5N. This way, the coupled reduced system becomes

½ðTRrÞ
T ZðTRrÞþðT

0R0
r Þ

T Z0ðT0R0
r Þ�fZ

&0
r g ¼ ½ðTRrÞ

T Bext�fuextgþ½ðT
0R0

r Þ
T B0

ext�fu
0
extg: (8)

2.2. Generalized rigid link between substructures

One of the major advantages of the evolution/observation formulation is the ability to easily take various coupling
conditions into account. Indeed, coupling two structures using all the DOF describing the behaviour of the interfaces can
lead to unrealistic predictions, inhibiting the motion. This is also useful when different modelizations are used for the two
interfaces (3D/beam or 3D/shell), or when interface nodes do not match. The approach which is suggested here is
extremely efficient when the complexity of the coupling conditions increases. Generalized coupling condition are easier to
take into account [11,40]. One can easily build a generalized motion for each interface, and then directly derive a basis for
the kernel of the coupling operator as defined in (4). Such a process is more tedious with the classical approach. Moreover,
in most cases, interfaces are described using a large number of DOF, when the overall displacements can be represented
using a much lower number of generalized DOF. In the classical Craig and Bampton method, for example, the number of
interface DOF is often larger than the number of fixed interface modes used to describe the internal dynamics. Since many
papers deal with the reduction of this subspace [10,41,42,9,39], we will only focus on the specific case where we can make
the assumption that only the six DOF associated to the rigid body motion of the interfaces are involved. Deriving a more
general case is straightforward.
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Output shape matrix: Under this assumption, the output shape matrix CI�rb for each interface can be defined with the
relation

½CI�rb� ¼ ½FI�rb�
T½MI�rb�½CI�, (9)

where CI is the input shape matrix allowing the observation of the interface DOF, FI�rb are the rigid body modes associated
to the interface DOF, and orthonormalized with respect to MI�rb, the mass matrix of the interface. This operator will
obviously project each interface motion onto the basis of the rigid body modes. However, this definition is not the most
convenient, since one must compute a mass matrix related to the interface. This could be done by considering a restraint
model of the interface [10], or a statically reduced mass [39]. On the other hand, a set of geometric rigid body modes can
easily be computed. Since this operator will be used as an output shape matrix for every interface motion, we do not
require any particular scaling. Hence, we could define CI�rb as a pseudo inverse (denoted +) of these computed rigid body
modes. Thus, in the following, we will use

½CI�rb� ¼ ½FI�rb�
þ ½CI�: (10)

Since the number of independent finite element DOF describing the interface is larger than the number of its rigid body
modes, the relation (10) leads to a well-conditioned problem. Finite element DOF describing the interface is larger than the
number of its rigid body modes, the relation (10) leads to a well-conditioned problem.

Input shape matrix: The definition of CI�rb allows the projection of any interface motion onto interface rigid body modes.
To define the associated input shape matrix BI�rb, it is convenient to consider the dual quantities of the generalized
displacements of the interface. Hence, the definition of BI�rb is straightforward, since we have

½BI�rb� ¼ ½CI�rb�
T: (11)

Null subspace basis: For the case of the generalized rigid body motion of the interfaces, let ½Rrb
R0

rb

� denote a basis of the null
space of ½CI�rbT �C0

I�rbT0�. So, there is a unique vector Z0
rb representing the whole behaviour for each state f ZZ0g, and we have

Z
Z0

( )
¼

Rrb

R0
rb

" #
fZ0

rbg: (12)

3. Generalized flexibility reconstruction

This section presents the key feature to ensure good equivalent load estimation. In the previous section, reduced model
coupling has been presented. Since a tuned FE model of the reference device is available, the set up of a statically complete
reduced model of the reference device is straightforward. For the active component, we will use a mixed numerical/
experimental approach. The reduction basis adopted for the active component is based on a set of free-interface modes,
and needs to be completed with a subset of vectors that represent static deflections of the models submitted to relevant
interface loads.

These vectors contain two kinds of data. The first one is the shape of the deformed model under a given load. The second
one is the scaling between the amplitude of the resulting displacements and the applied load. In the first section, the
construction of generalized correction modes shapes is proposed. This step is supported by a coarse FE model of the active
structure. In the second section, the scaling to the proper mechanical behaviour of the active component is presented. To
achieve scaling, modal analysis of both the reference structure and the assembly of reference device and active structure
are used, in conjunction with data expansion techniques. This step is critical, since the scaling of the correcting shapes
directly controls the flexibility of the interface, and then the coupling process.

3.1. Generalized correction shapes

The first step to the set-up of a well-conditioned statically complete representation of the active device is the definition
of consistent shapes. These shapes must consistently represent the displacements over the active device for all the
interface loads. To build a kinematic relationship between the measurement points and the interface DOF, we propose to
build a coarse, local FE model of the instrumented sub domain including reasonable mechanical properties. Other field
reconstruction techniques, or analytical results for simple structures, can be used, but the choice of a coarse FE model has
many advantages:
�
 to obtain a quick design and set up of a model depicting the geometry of the active structure, even for complex
geometries,

�
 to ease the construction of smooth displacement fields defined both at measurement points and on the interface,

�
 to ensure the regularity of the shape functions with respect to the equation of motion.

Moreover, a quick tuning procedure can be set up, so that the first few mode shapes of the local model reasonably match
the identified mode shapes of the active component, ensuring the validity of a priori computed correction shapes. Let ML
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and KL denote the mass and stiffness matrix of the local model, and qL the FE DOF. Since we chose to use generalized links
between substructures, the equations defining the main correction shapes need to be adapted.

Generalized constraint modes: Deriving from the construction of the constraint modes [36], the equivalent generalized
constraint modes Tg�cm are simply given by considering the generalized interface definition, so that

½Tg�cm� ¼
½Id�

�½KCC �
�1½KCI�

" #
:½FI�rb� (13)

Generalized residual inertia relief modes: In the case of generalized interface links, the definition of generalized inertia
relief modes Tg� irm becomes

½K�½Tg�irm� ¼ ½M�½Frb�,

½CI�rb�½Tg�irm� ¼ ½0�:

(
(14)

Generalized attachment modes: Generalized attachment modes derive from interface loads BI�rb, and are given by

½K�½Tg�am� ¼ ½CI�rb�
T: (15)

When the coupled component exhibits rigid body modes, the relation (15) leads to an ill-conditioned problem. Indeed, for
some loading cases, there could be no reaction forces to balance the interface loads. To overcome this issue, Geradin and
Rixen [35] have proposed a method with temporary constraints, while Craig [37] proposed to equilibrate interface loads
with inertia forces.

Since the range of constraint modes (+ residual inertia relief modes) equals the range of attachment modes (+ rigid
body modes), a re-orthogonalization procedure can be used, so that the choice of a particular subset has no importance. It
is also the case with generalized correction shapes. In the following, Tg�cs will be built using constraint modes (+ residual
inertia relief modes) for convenience.

3.2. Generalized correcting modes tuning

The correction shapes are built thanks to the local FE model of the active device. Since its geometry and overall
mechanical properties are relevant with respect to the real structure, computed shapes should give a good estimation of
the expected shapes. However, this local FE model is not tuned at all, so these correction shapes cannot be used directly,
and beforehand need tuning. To achieve this goal, two different modal analyses will be conducted.

The first one is the modal analysis of the active component alone. A set of experimental modes Ft is identified,
along with natural frequencies ot . This test enables the quick tuning of the local model. The second modal analysis is
conducted on the reference device (O0) and the active component (O), and will directly be used to tune the scales
of the correcting shapes. Let F&0

t and o&0
t denote the identified mode shapes and natural frequencies of the composite

structure OþO0.

3.2.1. Statically complete reduced model of the active component

Once the first modal analysis is performed, and the local FE model is properly set up, we can define a statically complete
reduction basis for the active structure. This basis contains the set of nt free interface experimental modes Ft , and the
correction shapes Tg�cs. Since Ft is defined at measurement points, and Tg�cs is defined for the qL, let Ct

L (resp. C0
t ) denote

the output shape matrix allowing the observation of measurements points from local FE DOF (resp. active component FE
model). Hence, the vectors of the basis ½Ft CL

t Tg�cs� are all defined at measurement points, and are relevant to set up a
correct reduced model. However, vectors of Ft and CL

tTg�cs can be strongly collinear, and then Tg�cs must be filtered to
remove any free interface mode contribution from CL

tTg�cs.
To achieve this goal, vectors of Ft are extended over the whole local model. The expansion basis TL

t used for this purpose
is built in two steps. First, attachment modes TL

am are defined, with respect to CL
t , so that

½KL�½TL
am� ¼ ½C

L
t �

T: (16)

In the second step, these vectors are sorted with respect to their strain energy, so that

½TL
t � ¼ ½T

L
am�½C

L
�, (17)

with CL being the eigenmodes of the local model, reduced on TL
am:

½TL
am�

Tð�ðoL
amÞ

2
½ML�þ½KL�Þ½TL

am�fC
L
g ¼ 0: (18)

A truncated basis will be used in the expansion process. When all the vectors are kept, the result is equivalent to the
static expansion result, which is known to well fit the measurements, but also propagates the measurement errors. Using a
truncated basis allows control over both the regularity and efficiency of the expansion procedure. This issue has been
extensively discussed in [3]. Hence, extended mode shapes FL

t are given by

½FL
t � ¼ ½T

L
t �½Z

L
t �, (19)
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ZL
t being the solution of the least square problem defined by

½ZL
t � ¼ ArgMin

ZL

ðJ½CL
t �½T

L
t �½Z

L��½Ft�J
2
Þ: (20)

The basis FL
t is then defined on local model’s DOF, and it can be used to filter the correction shapes. The complete basis

½FL
t TL

g�cs� is then orthogonalized with respect to ML and KL. At this stage, the quick tuning of the local model is important,
since the nt first vectors of the orthonormalized basis must span the same subspace as FL

t , even if the vectors cannot
properly be paired, and the eigenfrequencies do not match. It is a critical condition to ensure the proper filtering of Tg�cs

L .
Let TL

r denote the filtered basis based on Tg�cs
L .

3.2.2. Tuning correction using coupled mode shapes

The new basis ½FL
t TL

r � then contains all the information concerning the shape of the vectors. However, since the local FE
model is not a completely tuned FE model of the active component, one cannot ensure the scaling of TL

r. Indeed, for a tuned
FE model, the classical orthogonality relationships should be verified, and thus have

½FL
t �

T½ML�½FL
t � ¼ ½Id�,

½FL
t �

T½KL�½FL
t � ¼ ½

\ot \�
2,

8<
: (21)

for the expanded mode shapes. The pseudo pulsation oL
r associated to the vectors of TL

r would define a scale for the
correction shapes, and thus we should have

½TL
r �

T½ML�½TL
r � ¼ ½Id�,

½TL
r �

T½KL�½TL
r � ¼ ½

\oL
r \�

2:

(
(22)

However, this is not the case, and we need to get the proper scales oL
r to define the statically complete reduction basis

for the active component. The filtering step, along with mass normalization with respect to ML does ensure

½TL
r �

T½ML�½FL
t � ¼ ½0�,

½TL
r �

T½ML�½TL
r � ¼ ½Id�,

½TL
r �

T½KL�½TL
r � ¼ ½

\ ~oL
r \�

2:

8>><
>>: (23)

The stiffness contributions ~oL
r will then be tuned using the modal analysis of the complete structure. Indeed, building a

reduced model of the composite structure OþO0 using the reduction basis ½FL
t TL

r � leads to

�ð ~o&0
r Þ

2
½Id�þ ½Rr �

T
\ot

2
\

0

0 \ ~oL
r \

2

� �
½Rr �þðT

0R0
r Þ

TK0ðT0R0
r Þ

� �� �
f ~C

&0

r g ¼ f0g, (24)

where ~C
&0

r and o&0
r denote the eigenmodes and eigenfrequencies of the coupled problem.

Note that no assumption is made on T0. Any method can be used to build this reduced basis. However, due to the
purpose of this paper, and the hypotheses made for the coupling conditions (which states that only six DOF related to
generalized rigid body motion of the interface are involved), T0 should include generalized correcting shapes, instead of
classical attachment modes or constraint modes. This point will be discussed in Section 4.1.

We will then compare the predicted results with the measurements. Since ~F
&0

r are defined for generalized DOF, one

must first project these generalized shapes onto the test mesh. Let C0
t denote the output shape matrix allowing the

observation of the reference device FE model DOF. The predicted shapes ~F
&0

t are then given by

f ~F
&0

t g ¼ ð½C
L
t �½F

L
t TL

r �½Rr �þ½C
0
t �½T

0�½R0
r �Þf

~C
&0

r g (25)

These mode shapes can also be used to compute the eigenmodes of the composite structure defined on both the FE
model of the reference device and the coarse FE model of the active component. These modes ~F

&0
are given by

f ~F
&0
g ¼ ð½FL

t TL
r �½Rr �þ½T

0�½R0
r �Þf

~C
&0

r g (26)

Let Tg denote the generalized basis ½FL
t TL

r � of the active component.
One then seeks the best stiffness contributions oL

r that allows the most accurate prediction of the coupled behaviour
ð ~F

&0

t , ~o&0
r Þ. Predicted values are then compared to measurements ðF&0

t ,o&0
t Þ to implicitly define an optimization problem.

In other words, the objective is to find oL
r so that

oL
r ¼ ArgMin

~oL
r

ðaoJ½\ ~o&0
r \��½

\o&0
t \�J2

þaFJMACð½ ~F
&0

t ð ~o
L
r Þ�,½F

&0
t �Þ�½Id�J

2
Þ: (27)

MAC denotes the modal assurance criterion [43] that measures the correlation between the two subsets of shapes, and
ao and aF are weight coefficients. The first step is conducted with aF ¼ 0 and ao ¼ 1, which is the least restrictive
function. And, to enhance the quality of the results, aF is increased gradually. Moreover, the choice of the starting
values for ~oL

r is critical. A good choice is to scale the first ~oL
r with respect to the local model, so that the first iteration is
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given by

½
\ ~oL

r \�
2 ¼ ½ðTL

r Þ
T KLTL

r �
1

nt

Xnt

k ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðotÞ

2
k

fFL
t g

T
k ½K

L�fFL
t gk

s
: (28)

Thus, a reduced model of the active device is available, and statically complete with respect to interface’s generalized loads.

3.2.3. Practical aspects linked to the choice of the reference device

The design of the reference structure is an important point ensuring the success of the whole process. Since
identification of generalized shapes is performed on the base of coupled behaviour of substructures, the reference device
should exhibit the following antagonist properties:
�
 the coupling interface should be stiff enough, with respect to the active structure. This condition ensures large enough
interface loads. A soft interface will lead to great inaccuracies in the scaling process.

�
 the reference device should not be to stiff, either, to allow measurable displacements, when coupled with the active

structure. A stiff reference device will lead to measurements inaccuracies and noise.

The design of a reference structure that will be stiffer than the active structure, but being the same order of magnitude,
seems to be a good compromise. With cautious measurements, the behaviour of the reference structure can be accurately
identified, while the magnitude of interface loads will reasonably match Jf J.

4. Generalized load identification

Once a complete reduced model of the active device is built, we can set up a generalized load that will have the same effects
on the structure under design (O1) as the true loads. Indeed, these loads are impossible to determine without knowing the exact
behaviour of the active component. This process is divided into two parts. The first part is a classical force identification process.
Having a tuned FE model of the reference device, operating measurements made on the composite structure OþO0 are used to
define a set of generalized interface loads f0 applied to the coupling boundary S. In the second part, these generalized interface
loads are derived into generalized loads ~f defined all over the active structure, excluding DOF involved in the interface motion.

4.1. Generalized interface equivalent loads

The first step is to identify generalized equivalent interface loads. Considering relation (8), and replacing the complete
state of the composite model Z&0 with the generalized coordinates associated to each substructure, given by

Zg

Z0

( )
¼

Rr

R0
r

" #
fZ&0g, (29)

where ½ðRrÞ
T
ðR0

r Þ
T
�T is the basis of the kernel of the observation equation

½C0
I�rbT0 �CI�rbTg �

Z0

Zg

( )
¼ f0g, (30)

we can express the behaviour of the composite model:

½ðTgRrÞ
T ZðTgÞ�fZggþ½ðT

0R0
r Þ

T Z0ðT0Þ�fZ0g ¼ ½ðTgRrÞ
T Bext�fuextgþ½ðT

0R0
r Þ

T B0
ext�fu

0
extg: (31)

Let f denote the true generalized external load, and assume that the reference device is not submitted to an external
load. Thus, we have

ff g ¼ ½ðTgRrÞ
T Bext�fuextg: (32)

Hence, knowing the overall generalized motion Z0 of the operating reference device, including the interface, directly leads
to the expression of f0.

½ðT0R0
r Þ

T Z0ðT0Þ�fZ0g ¼ ff0g ¼�½ðTgRrÞ
T ZðTgÞ�fZggþff g (33)

Moreover, we made the hypothesis that only the six generalized rigid body motions of the interface are involved in the
coupling process. This hypothesis gives us the relation between f0, the generalized interface loads, and u0

I�rb, the
components of the torsor for the interface

ff0g ¼ ½T
0R0

r �
T½B0

I�rb�fu
0
I�rbg (34)

By construction, to ensure static completion, T0 allows the observation of the rigid body modes of the interface. The
relation (34) can be used to project f0 in order to estimate u0

I�rb, so that

fu0
I�rbg ¼ ð½T

0R0
r �

T ½B0
I�rb�Þ

þ
ff0g: (35)
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Identification of f0 can be done using classical inversion techniques, but one must be extremely cautious, since results
strongly depend on employed techniques. Indeed, since f0 must be 0 outside the interface, modelling and measurements
errors, along with necessary regularization techniques will lead to a generalized load defined all over the reference device.
A generalized inversion technique, proposed in [31], will be used to define the generalized interface loads.

In operation measurements are mostly done using one or more reference sensors, other sensors being moved all over
the structure under test. To ensure proper phase relations between measurements, cross and auto spectra are built, with
respect to the reference sensors. It is seldom possible to come back to stable Fourier transforms of the measurements, and
identification processes are conducted using cross and auto spectra information. However, for the sake of clarity, the
following presentation will be made assuming that the Fourier transform of the measurements is available. To extend this
presentation to cross and auto spectra measurements, one can refer to the work presented in [31], for example.

The main steps of the generalized force identification process are summarized below, assuming that operating
measurements yt

&0 are available. Z&0
t , and then Z0

t will be computed using the measurements yt
&0.
�
 Build a proper expansion basis, representing the coupled behaviour of the composite model OþO0.

�
 Extend operating measurements on the composite model of the reference device and active component.

�
 Match the restriction of extended data to the reference device with the predefined response of the reference device to

generalized interface loads.

�
 Compute the generalized interface loads using the tuned FE model of the reference device.

The proper reduction basis ~F
&0

for the composite structure is used to perform the modal expansion of the
measurements. The reduced model of the active structure is statically complete with respect to the generalized motion of
its interface, hence allowing the set up of a relevant coupled model of the composite structure. The reduction basis T0 is

easily built, since a tuned FE model of the reference device is available. The vectors of ~F
&0

are the first eigenmodes
computed with the relations (24) and (26), considering the tuned stiffness contribution given by Eq. (27).

We assume here that operating measurements y&0
t derive from the composite behaviour ~F

&0
, so that

fy&0
t g ¼ ½C

&0
t �½

~F
&0
�, (36)

where C&0
t is the output shape matrix representing the observation of the measurements from the DOF of the complete

composite FE model.
Hence, operating measurements are extended using a least mean square minimization. For each frequency of interest,

the motion defined on all the FE DOF (both reference device and active component) q&0
t is given by

fq&0
t g ¼ ½

~F
&0
�fZ&0

t g, (37)

where generalized operating DOF Z&0
t are given by

fZ&0
t g ¼ ArgMin

Z&0

j½C&0
t
~F

&0
�fZ&0g�fy&0

t gj
2: (38)

The number of sensors must then be at least as large as the number of vectors of ~F
&0

to ensure that ½C&0
t
~F

&0
� is full rank.

The solution is then given by

fZ&0
t g ¼ ð½C

&0
t
~F

&0
�Þ
þ
fy&0

t g: (39)

Direct solution for generalized load definition: Once the motion is defined over the entire composite model, the
computation of f0 is straightforward. The generalized interface loads f0 are simply given by

ff0g ¼ ½T
0R0

r �
T½Z0�ð½C&0

0 �fq
&0
t gÞ, (40)

where C&0
0 can extract the DOF of the reference device model from the complete composite model.

However, this subspace can be too large to ensure a proper expansion result. Hence, one must choose a reduced
subspace to ensure the regularity of the solution. This can be efficiently done by sorting the vectors of T0 with respect to
strain energy, and by considering only the lowest order shapes. An alternate technique, based on the same principles as the
generalized flexibility reconstruction problem, can be used.

Preferred solution for generalized load determination: We are interested in generalized interface load estimation within a
given frequency band. Thus, we assume that the restriction of q&0 to the reference device alone can be represented on a
subspace including both free interface modes F0 of the reference device, and its static responses T0

g�am to generalized
interface loads. An input shape matrix B0

I�rb is built considering the technique proposed in Section 2.2. Hence, considering
the rigid body motion of the interface DOF, the static responses T0

g�am are built. As for the construction of Tg�cs
L , many

options are available. The complete basis ½F0 T0
g�am� is then orthonormalized with respect to the tuned FE model of the

reference device. Let T0
g denote this reduction basis.

The next step consists in determining the contribution of the vectors of T0
g in q&0. Since the reference device is only

submitted to the reaction of the active components, the restriction of ~F
&0

to the reference device model’s DOF and T0
g
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should span the same subspace. If T0=T0
g, the same basis used to build the composite model, then this assertion is obvious.

Other reduction bases can be used in Eq. (24) to build the composite model, but since they all need to be statically

complete with respect to the interface, one ensures that T0
g is included within the restriction of ~F

&0
. Hence, the set up of T0

g

and so of ~F
&0

are of critical importance.
Hence, one can easily determine the contribution Z0

t of the vectors of T0
g within the restrictions of ~F

&0
. Let C&0

0 denote
the output shape matrix allowing the observation of the reference device FE model from the composite structure model. Z0

t

is given by

fZ0
t g ¼ ½T

&0
0 �fZ

&0
t g, (41)

where T&0
0 is the linear mapping between both subspaces,

½T&0
0 � ¼ ArgMin

T
j½T0

g �½T��½C
&0
0 �½

~F
&0
�j2: (42)

In this case, since the number of DOF of the reference device FE model is larger than the number of vectors of T0
g, the inverse

problem is well conditioned, and T&0
0 is full rank. This problem can be solved using the pseudo inverse of T0

g

½T&0
0 � ¼ ½T

0
g �
þ ð½C&0

0 �½
~F

&0
�Þ: (43)

As operating motion is defined for the reference device, the generalized interface loads f0 are directly given by

ff0g ¼ ½T
0
g R0

r �
T½Z0�½T0

g �fZ
0
t g: (44)

Note: Operators R0
r and Rr cannot be used to compute Z0

t from Z&0
t , since Z&0

t are the generalized coordinates associated
to the basis ~F

&0
, when Z0

t is related to T0
g (or T0). We could have used the reduced modes ~C

&0

r , defined in the relation (24),
to switch the bases, instead of relation (43). One can show that both results are the same.

In the following, we will use T0
g instead of T0.

4.2. Equivalent generalized load

Generalized interface loads being defined on the reference device, the last step is the determination of an equivalent
generalized load ~f on the active device. We seek a load that would have on O0 exactly the same effects as the true load f.
Assuming such ~f exists, it would then verify

½ðT0
g R0

r Þ
T Z0ðT0

g Þ�fZ
0
t gþ½ðTgRrÞ

T ZðTgÞ�f ~Zg ¼ f~f g, (45)

Displacements q0
t ¼ ½T

0
g R0

r �Z0
t on O0 are the same, but generalized displacements ~Z on O may be different, since only

generalized interface motion is constrained.
Substituting Eqs. (33) and (45) gives the expression of the generalized load ~f

½ðTgRrÞ
T ZðTgÞ�f ~Zg ¼ f~f g�ff0g, (46)

Given a particular generalized solution ~Z, one can then estimate the related generalized load ~f . In Section 4.1, we have
built a generalized displacement Z&0

t , based on Eqs. (36), (37) and (38). This solution can then readily be used to compute a
generalized solution ~Z for the active structure in the same way as Z0

t was computed from Z&0. Hence, we can have

f ~Zg ¼ ½ ~T 0�fZ&0
t g, (47)

where ~T 0 is the operator allowing the transition between the subspaces, hence

½ ~T 0� ¼ ArgMin
T
j½Tg �½T��½C

&0�½ ~F
&0
�j2, (48)

where C&0 can extract the DOF of the active component model from the complete composite model. The number of DOF of
the coarse FE model of the active component is larger than the number of vectors of Tg, the inverse problem is well
conditioned, and ~T 0 is full rank.

Combining the various relations, and replacing in (46), leads to the expression of ~f as a function of the models, the
reduced bases and the measurements only:

f~f g ¼ ð½ðT0
g R0

r Þ
T Z0ðT0

g Þ�ð½T
0
g �
þ ½C&0

0 �Þþ½ðTgRrÞ
T ZðTgÞ�ð½Tg �

þ ½C&0�ÞÞ½ ~F
&0
�ð½C&0

t
~F

&0
�Þ
þ
fy&0

t g (49)

Eq. (49) is then applied for each frequency step to compute the generalized load ~f . This solution is completely driven by

the measurements and the reduced bases T0
g and Tg, since ~F

&0
is also based on these bases. If ½TT

g ZTg � is a good reduced FE

model of the active component, and if T0
g and Tg are well suited to represent the dynamics within the relevant frequency

range, ~f will tend towards f when the number of sensors increases, hence when y&0
t tends to q&0

t . It also appears that the
choice of the reduced basis Tg is critical. Indeed, performing a good static completion, as described in Section 3, will ensure

the construction of relevant coupled modes ~F
&0

, and then the quality of the generalized load ~f .
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By construction, the use of C&0
r allows us to switch between bases, so that ~f is also given by

f~f g ¼ ½ðT0
g R0

r Þ
T Z0ðT0

g R0
r ÞþðTgRrÞ

T ZðTgRrÞ�½C&0
r �ð½C

&0
t
~F

&0
�Þ
þ
fy&0

t g: (50)

~f is a generalized load defined for the reduction bases Tg and T0
g. In order to use this equivalent load as an input for

another composite model, including the active component, one may define an equivalent input shape matrix ~B. It can
simply be done by using relation (32). In our case, the projection basis for ~f is F&0, hence ~B can directly be computed using

½ ~B� ¼ ð½C&0½ ~F
&0
��Þ
þ : (51)

5. Numerical example

In this section, a numerical experiment is built to validate the methodology previously defined, and summarize the
different steps. Simple FE models representing the reference device and the active component are given. An internal load f

is defined. Experimental modal analysis and operating measurements for the reference device, the active component and
the composite structure are simulated. The main steps of the whole process are reproduced in the example.

For the purpose of the demonstration, a third structure is introduced. This structure, denoted O1, simulates the
structure under design, and is coupled with the active component. This composite model will be submitted both to internal
load f, and to the identified equivalent load ~f .

5.1. FE models and hypotheses

This example is conducted in the same way as in a real life situation. FE models of a reference device, an active
component, and the structure under design are built. The assemblies representing the composite structures OþO0 and
OþO1 is presented in Fig. 2.

These models could represent a pump, the reference test bed designed by the pump manufacturer, and the part of the
floor where the pump should be located. The reference test bed and the floor are clamped on their lowest sides, and
the pump is bolted to the reference device or the floor. A distributed load is defined inside the pump, whose torsor, taken at
the interface, have no zero value. This aims to simulate the complex behaviour of both fluids and rotating parts. These
models have been designed to meet the typical dynamic properties of the structures of interest at EDF. The study will be
conducted on the [0–100 Hz] frequency range. The first and tenth frequencies of the three structures and two assemblies
are summarized in the Table 1. According to the Section 3.2.3, the reference device should be stiffer than the active
component. However, the choice of building a realistic example lead us to a slightly softer structure.

To simulate the test results, experimental meshes are defined for the reference device and the active component. A total
amount of 161 sensors are defined, 60 for the active component, and 101 for the reference device. For the active
component, the choice of measuring the three directions at each point has been made. It is supposed to be an unknown
structure, so some efforts should be made for the measurements. Concerning the reference device, its geometry and
behaviour should be simple, but the need of a fine tuned FE model imposes some fine measurements. However, its
behaviour can be fairly well estimated using a coarse FE model, so we choose to have numerous sensor locations and few
measurements directions. This configuration aims to represent a realistic test case that could be used to experimentally
validate the methodology.
Table 1
Frequencies of the first and tenth eigenmodes for each structure/substructure assembly.

Mode # O0 (Hz) (reference) O (Hz) (active) O0þO (Hz) O1 (Hz) (under design) O1þO (Hz)

1 47.7 99.3 15.7 27.3 11.0

10 163.2 160.0 96.7 69.3 53.2

Fig. 2. FE model of the reference device + active component assembly (left) and of the structure under design + active component assembly (right).
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Reference results have been computed using complete models of assemblies, assuming 1 percent of modal damping.
Experimental modal analyses should be conducted within an extended frequency range, to limit the modal truncation
effects, and every mode within this frequency range is supposed to be properly identified. Modes up to 150 Hz are retained
for this analysis. This assumption is relevant, considering that this includes the first eight modes for both the reference
device and the active component.
5.2. Reduced model using generalized rigid body interface motion

The coupling area is limited to 16 nodes, since only the bottom face of the active device will be coupled to the other
structures. For the complete FE model assemblies, the interfaces are assumed to be perfectly glued, and every FE DOF will
be involved in the coupling. For the reduced models, the coupling conditions will be built based on generalized rigid body
interface motion hypothesis, as described in Section 2.2, since the coupling area is small, and stiff with respect to the
complete assembly.

To validate this approach, a comparison between the results obtained with the complete model, and the assembly of the
reduced model is conducted. The results are very good within the frequency range [0–100 Hz]. We have no more than
2 percent of error on the frequency prediction, with MAC values no less than 97 percent for the first 10 modes in each
configuration, hence validating this hypothesis. All the frequencies are slightly under estimated. This phenomenon is due
to the reduction basis used to describe the interface behaviour. This phenomenon should be carefully examined, since it is
the key of the success of this coupling procedure. If the coupling areas were not stiff enough, with respect to the complete
structure, assuming a generalized rigid body motion for the interface would lead to inaccurate results. In our case, this
assumption is fairly well verified, and the assumption of a generalized rigid body interface motion leads to good coupled
results.
5.3. Reconstruction of the correction shapes flexibilities

This study is conducted using eight modes for the reference device and 14 (including the six rigid body modes) for the
active component. Correcting shapes are built considering generalized rigid body motion of the coupling interface, using
the generalized inertia relief mode shapes. These shapes are orthonormalized with respect to the eight flexible modes
already available and the six computed rigid body modes. Fig. 3 presents the starting point, and the result of the
optimization procedure. The reference model is the complete FE model of the assembly.

Since the complete basis is orthonormalized, the starting point for the generalized flexibilities should be higher than the
last flexible frequency fmax of the active component. The six starting points for the optimization process are chosen
according the criterion given in Section 3.2.2 to verify this assumption. They are slightly adjusted to ensure a good
convergence of the minimization process. The minimization focuses on the first 10 modes, including criteria on both MAC
and frequencies.

The optimization process is very efficient. The model with the optimized stiffness contributions provides better results
than the true reduced model, presented in Section 5.2. For the first 10 modes, all the MAC values are 1, and the error in the
frequency prediction is less than 0.1 percent. The correction shapes used in this process are the true shapes, since the local
FE model used is also the true FE model of the active component. Using different models would induce different shapes, in
such a way that the results are not likely to be as much satisfactory. However, the underlying principles are validated, and
a fair estimation of the residual flexibilities can be obtained, thanks to the optimization. The robustness of such process
with respect to the local FE model has been extensively studied in [3].
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It must be noted, however, that the success of the process is strongly linked to both measurements and coupled models.
All the correction shapes should have a significant effect on the coupled modes, and they all need to be involved in the
identified modes. Indeed, if a particular correction shape has no effect on the coupled behaviour, or if it has a critical
influence on a particular coupled mode that is not identified, the associated stiffness contribution will not be efficiently
estimated. This can also lead to conditioning issues for the optimization procedure. Hence, if a particular shape has no
significant role in the coupling process, it should better be removed from the correction shapes subset.
5.4. Reconstruction of the interface load f0

The next step is the estimation of the interface load f0 transmitted by the active device to the reference
structure. Operating measurements have been simulated, and measurements defined at sensors are expanded

on the calculated mode shapes of the reduced model ~F
&0

of the composite structure OþO0. As stated in the theoretical
part of this paper, the choice of the expansion basis governs the prediction results. A guideline for the selection of relevant
vectors in the expansion basis is proposed in this section, and results illustrating the influence of these choices are
proposed.

Let Nm 0 (resp. Nm) denote the number of modes identified for the reference device (resp. for the active component).

Assuming that six generalized correcting shapes are added to each reduced model, a total of Nm+Nm 0+6 modes ~F
&0

have
been computed. If we have more sensors than computed modes, the expansion process is well conditioned. If more modes
than sensors are computed, the size of the expansion should be reduced. This can be performed either by keeping only the

first computed modes of ~F
&0

, or by choosing less modes for each reduced model of the components. Several choices are
discussed below.
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To illustrate the effects of the choices in the expansion basis and in the truncation, two expansion bases B1 and B2 are
computed. They both correspond to all the coupled modes of the composite reduced models, built with different
parameters. [B1] is computed using
�

Fig
(Fo
eight modes (up to 150 Hz) for the reference device, and six generalized flexibility correcting shapes,

�
 14 modes (up to 150 Hz) for the active component, including the six rigid body modes, and the six generalized flexibility

correcting shapes,

and [B2] is computed using
�
 five modes (up to 110 Hz) for the reference device, and six generalized flexibility correcting shapes.

�
 nine modes (up to 110 Hz) for the active component, including the six rigid body modes, and the six generalized

flexibility correcting shapes.

There are 28 vectors in B1, and 20 in B2. It should be noted that when changing the number Nm of free modes in the active
component reduced model, the optimization problem should be solved to compute the optimal stiffness contributions
associated with this particular basis.

Some other bases are derived from B1 and B2:
�
 Truncation based on the behaviour: [B1�flex] and [B2�flex], where all the relevant predicted mode shapes are kept, hence
all but the last six. Indeed, for two components, we have 12 correction shapes, six for each component. By construction,
for each correction shape, we have a relevant behaviour for a given substructure, while imposing a null behaviour on
the other. Ensuring the continuity on the interface using these 12 shapes imposes six constraints, so only six shapes are
well defined, corresponding to static deflection of the coupled model for generalized rigid body motion of the interface.
The other six shapes should be null shapes, leading to six spurious shapes in the coupled model.
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�
 Truncation based on the frequency: ½B12150 Hz�, ½B12100 Hz� and ½B22100 Hz�, where only the coupled modes associated with
frequencies less than 150 and 100 Hz are kept. There are 20 vectors in ½B12150 Hz�, and 12 in ½B12100 Hz� and ½B22100 Hz�. It is
noted that ½B12100 Hz� and ½B22100 Hz� should be equal.

In this example, the sizes of both bases are smaller than the number of sensors. Nevertheless, we will investigate the
effects of the truncation on the reconstruction process. It is not a priori clear, indeed, what option should be preferred. On
one hand, reducing the size of the expansion basis itself will also limit the noise propagation in the reconstruction process,
but will limit the observation of the highest order modes. On the other hand, accounting for the highest order modeshapes
should increase the accuracy of the estimation, but will affect the conditioning of the inverse problem. The right truncation
is the best compromise between these two effects. The competition between these effects is illustrated in Fig. 4. The
reference solution, denoted ‘‘exact’’, is computed with the full FE models of the composite assembly, and of the reference
device to derive f0.

When the complete bases are used, the estimation of the load in the ~x direction is not satisfactory. The low frequency
estimation computed with B1 is good, but higher frequencies components are not well estimated outside the main
resonance frequencies. The results computed with B2 are not accurate at all, the quasi-static contributions of some higher
order modes are not well taken into account. All these phenomena derive from the presence of the last six spurious modes
in both B1 and B2.

Reducing the size of the basis significantly increases the quality of the estimation. Eliminating the spurious shapes leads
to fairly accurate results. The basis (B2�flex) leads to the closest estimation, but results are noisy, since the last coupled
modeshapes are not well estimated. Using frequency based truncation slightly deteriorate the estimation, but noise is quite
completely eliminated when load levels are significant. It can be noted that the bases B12100 Hz and B22100 Hz lead to the
same results, as expected. It should also be noted that the size of the expansion basis directly influences the results. The
load is overestimated when few vectors are used, and underestimated when a large number of vector is used to perform
the data expansion. However, the load peaks are well estimated in all cases, when considering truncated bases. The good
choice is then to build an expansion basis relevant with the frequency range of interest for the load identification. Larger
bases could lead to model inconsistencies.

5.5. Reconstruction of the equivalent load ~f and estimation of f1

At this stage, we can estimate the generalized equivalent load ~f to be applied to the active device, coupled with any
structure. In order to validate the accuracy of the reconstruction, the estimated load ~f is applied to the composite model
OþO1, and the equivalent interface load f1 between the active component and the structure being designed is computed.
The quality of the reconstruction of f1 will then be a fair estimator for the reconstruction of ~f , since it measures the load
that will be transmitted to the structure under design. The estimations of f1 have been computed with the variants of bases
B1 and B2 defined in Section 5.4.

Fig. 5 presents the results computed using the various expansion bases. We note that all bases lead to estimations that
exhibit spurious peaks. These peaks are located at the resonant frequencies of the composite model O0þO. They derive
from the construction of generalized load ~f . The estimation of the generalized load ~f is strongly distorted near the
resonance frequencies of the system used to perform the identification. These errors derive from the estimation of the
complete behaviour from test results, caused by the expansion process. Using data from a larger number of sensors could
significantly lower these errors in the generalized loads. Moreover, some data treatment can also be performed to lower
these errors, since their locations are known. If one can assume some regularity for the true load spectra, this can be used
to smooth the results. Assuming a generalized rigid link between the structures also limits error propagation. Reducing the
size of the subspace describing the interface loads introduces some regularization in the process, acting as a spatial filter.

However, theses results are good. Estimations obtained using the full bases are not accurate, but reducing the size of the
basis significantly increases the quality of the results. In this case, both truncation approaches lead to very good results.
These results confirm the good behaviour of the proposed methodology to estimate the main loads. Effects in all the
directions are well estimated, assuming that the expansion basis can introduce some important data linked to the higher
modes, while keeping a reasonably low conditioning number.

6. Conclusion

In this paper, a complete methodology is described to set up a statically complete reduced model of an active
component from tests only. This active component is submitted to an internal load. For both the component and the load,
no model is available. However, one may need to estimate the behaviour and effects of this component when linked to
another structure.

First, static completion is achieved using results from tests made on the active component with different boundary
conditions. In each case, the boundary conditions need to be well known to derive a relevant model. Hence, free-free
boundary conditions are used, as well as coupling with a simple and easy to build model of the reference device.
Hypotheses about the interface behaviour are made to introduce a generalized link between the structures. The use of data
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expansion techniques on a coarse FE model of the active component, coupled with a tuned FE model of the reference device
allows the estimation of residual flexibilities for the interface.

The second major step is the set up of a generalized load defined on the active component inducing on any other
structure the same effects as the ‘‘true’’ internal loads, assumed to be unknown and unreachable. The inverse problem
based on operating measurements and tuned FE model of the reference test bed is solved, to determine an equivalent
loading on the coupling interface. Combined with the statically complete model of the active structure, a generalized load
is computed.

A realistic numerical test case is set up, representing a motor pump on a nuclear plant floor. The motor pump is the
active component, only known by the manufacturer, and submitted to the internal loads. The complete method is
implemented. A reference device is introduced, and test results have been simulated. This reference device should realise
the compromise between the measurements and the inverse problem. To ensure good measurements, it should not be too
stiff, hence allowing good interface displacements estimations. But it should be reasonably stiff to limit conditioning issues
with the inverse problem. The efficiency of the residual flexibility estimation is presented, along with the relevance of the
generalized link hypothesis. Interface loads deriving from the internal loads are found, and compared to reference
numerical results. A generalized load coupling the interface load and the complete reduced model is computed, and
compared to the reference load. In each case, very good results are obtained. As the method relies on data expansion, some
keys are given to better estimate the solution using a priori considerations. Some limitations linked to the test set up are
also discussed.

The next step is to propose an experimental validation of the estimation of a statically complete reduced model. Some
academical devices are tested, and results for various boundary conditions will be presented. Once done, an internal load
will be simulated using a shaker, and the complete inverse problem will be solved.
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